SBS Supply Outlook

Rocky Mountain Pavement Preservation Partnership October 29, 2008

Presented by: The Association of Modified Asphalt Producers

DeWitt & Company

Why is SBS Currently in Short Supply?

- Styrene-Butadiene-Styrene (SBS) polymer capacity is not short
- Shortage of raw materials
- Ethylene production is the problem

Why is Ethylene Production the Problem?

- By-products of Ethylene Production
 - Styrene
 - Propylene
 - Butadiene
 - Isoprene
 - Pentadiene
 - Cyclopentadienes
 - Aromatic Resin Formers
 - Isobutylene
 - Amylenes
 - Hydrogen
 - Benzene

3 DeWitt & Company

Ethylene & Butadiene Market Comparison

- Ethylene Market
 - 120 million tons per year
 - Primary use packaging materials
 - Plastic wrap
 - Trash bags
 - Milk jugs
- Butadiene Market
 - 14 million tons per year
 - Primary use tires (70%)
 - Multiple other automotive and durable good uses
 - SBS polymer for asphalt (6%)

DeWitt & Company

4

How Is Ethylene Made?

- Basic ethylene production technology is called a steam cracking process
 - Process heats feed up to 1700 degrees, then injects steam that cracks the molecules
 - Cracker unit cost \$2 billion
- Choice between gas feeds like ethane, propane and butane and liquid feeds like naphtha and gas oils.
- Output is a mixture of ethylene and other products
- Requires a downstream purification processes to separate products

5 **DeWitt & Company**

What's Important to Know About Ethylene Production

Choosing Feeds to Produce Ethylene

- Each producer runs an economic model
- Feed availability and costs for the producer at their location
 - Yield of each feed varies considerably
 - Demand for each product
 - Alternatives to buy versus make that product
- Ethylene and propylene are the prime products
 - Evaluate netback of all products
 - Liquid feeds generally produce 15:1 ethylene to butadiene
 - Economic impact of butadiene is not large
 - Based on the conditions producers set a feed slate for the "Cracker"
 - Butadiene shortage is not a primary consideration for feed slate

7

Model Output

- Liquids are always in the slate due to the facilities being built to be liquid crackers
- Crackers modified in the 80's to be flexible
- Flexibility depends on producer, but varies from ~10% to ~50%
- Producing 3-5 million pounds a day a few pennies makes a big difference

What's Changed

- Structural change natural gas producers installed facilities to separate ethane
 - Ethane higher value than natural gas
- Ethane prices didn't increase with the crude oil run-up
- Economic incentive to run more ethane feed

What's Changed

- DeWitt estimates that the 1Q cracking slate went 10% lighter vs 2007 starting in February
- 2Q2008 slate has moved even lighter; possibly another 10-20%
- Incentives so great that teams of engineers are working on putting more gas into the cracking slate on a crash basis

11

Supply Issues Today

- Naphtha(liquid) cracking economics have improved, while ethane(gas) gotten worse.
- Ethylene producers have chosen to crack less ethane and more propane and butane for now – replaced gas with gas.
- Propane makes sense as it has a higher yield of propylene, which is short
- Slowing economy raises the spector of less ethylene production
- Next month ?

Ethylene General Trends

- Significant ethylene capacity additions in Middle East and Asia
 - Most of the Middle East is gas cracking
 - Most of Asia is liquid or naphtha cracking
- Little to no capacity additions in Western World
- Naphtha is short globally and expected to priced higher like gasoline until more refineries are built ~2012
- New trend for ethylene units outside of US to be more flexible to be able to run more gas feeds
 - Historically have been naphtha crackers
- Expect more flexible cracking; hence, more variable Butadiene supply

Butadiene (Bd) Supply

- Globally tight due to lighter cracking and higher demand
 - 2008 Bd supply estimated at 75-85% of 2007
- New Bd and ethylene capacity due on-stream in Asia
- Expected capacity utilization to be lower than 90% for the foreseeable future
- Regional differences
 - US crude Bd supply tight due to light cracking in first half
 - US has excess purification capacity and buys crude Bd from Europe to fill capacity
 - Europe tight on supply due to somewhat lighter cracking; thus, less crude Bd to export to US
 - New Asian capacity needs to catch-up with demand

North American Butadiene Consumption

15

What Factors Will Influence Supply?

Positive

- New capacity
- Bd pricing itself out of some applications
- High gas prices:
 - Less driving mean fewer replacement tires
 - Smaller vehicles/smaller new car tires
- Slowing economy; less growth

Negative

- Higher natural rubber prices driving consumers to synthetic rubbers based on Bd
- Lighter cracking
 - Higher naphtha prices
 - Structural change in US ethane market
- Low cost gas-based ethylene capacity coming on-stream in Middle East.

Tire Demand Data

- New Tire Demand
 - June vehicle production down 8% and falling
 - Vehicle production skewed towards smaller vehicles
 - Tire demand could be down over 12%
- Replacement Tires
 - Higher gas prices are reducing miles driven
 - Expect reduced tire demand over time
 - May take 3-6 months to play out.

October 2008

- Spread between gas and liquid feeds now down to \$.05
- Demand is shrinking tire demand is down
 - Asian market price drop of \$0.10- \$0.15 per lb

October 2008

Hurricane Ike – temporarily shut down Gulf Coast crackers

- Expected Bd price increase of \$0.10 per lb
- Reduced demand caused spike of only \$0.04 per lb

Crackers are back on line, but tire compound plants are not

- Result 100% Bd available to SBS producers for now
- SBS suppliers may be able to build up substantial inventory this winter

- SBS polymer-modified asphalts are typically crosslinked systems
 - Contractor friendly
 - Terminal blend supply
 - Do not require agitation
 - Storage stable
 - No major changes to HMA plant operation
 - No major changes to HMA laydown and compaction
- Alternative modification systems need to exhibit similar qualities

- SBR Latex butadiene based polymer that is not in short supply at this time
 - Not storage stable
 - Must be blended at HMA plant
- Non- butadiene polymers
 - Reacted Ethylene Terpolymer (Elvaloy)
 - Ethyl Vinyl Acetate (EVA)
 - Used in warm climates
 - Blended with SBS in cold climates
- Polyphosphoric Acid (PPA)
 - An extender, not an alternative
 - Can be blended with SBS to reduce SBS content

21 DeWitt & Company

- Ground Tire Rubber (GTR) – wet process
 - 15-20% GTR melted and swelled into asphalt
 - No cross-linking occurs
 - Not storage stable
 - Not a terminal blend process
 - AR binder cannot be PG graded in a meaningful way

Hybrid Binders

- Blend of SBS and GTR
- Cross-linked system
- Storage stable
- Terminal blend system
- Current research sponsored by FL DOT at University of Florida

• 'NOTHING' is not

an option

- PG Grading system is based on climate and traffic
- Using the wrong grade will lead to poor performance
- We have enough historical data to prove that PMA does improve pavement performance
- Flexibility and creativity are needed to come up with answers

DON'T SHOOT THE MESSENGER

25 DeWitt & Company

